Power Flow Control Via Effective Dispatch of Modular FACTS Devices

A fast heuristic dispatch algorithm for series modular power flow control (M-PFC) devices is proposed to effectively control the power flow in transmission lines and consequently alleviate overloads in normal operation or contingency scenarios. Solving the nominal M-PFC dispatch problems is a computationally expensive non-linear program. Our fast heuristic dispatch algorithm leverages line outage distribution factors (LODFs) to model the impact of the M-PFC on the power flow change in the transmission lines, resulting in an iterative linear program that can be solved very quickly. Our proposed dispatch algorithm is assessed on three different test cases, IEEE 24 bus, IEEE 39 bus, and a real large-scale test case with 1723 buses. The numerical results support the effectiveness of the approach in terms of overload relief and its efficiency in terms of computation time. The proposed dispatch algorithm is applicable in both real-time operation and offline planning studies.

Authors

Sogol Babaeinejadsarookolaee; Tom Nudell; Daniel Schweer; Medha Subramanian